If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12t^2-52t+40=0
a = 12; b = -52; c = +40;
Δ = b2-4ac
Δ = -522-4·12·40
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-28}{2*12}=\frac{24}{24} =1 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+28}{2*12}=\frac{80}{24} =3+1/3 $
| |3-6x|=15 | | 25/3y+4/5=9/10 | | 1/3(9a+6)=-7 | | 3c+4=12+10. | | x+2=-2x+11 | | (3-x)/(1-2x)=5 | | 1/6(2x+2)=1/3 | | 6^m+3=36 | | 3^3r+1=81 | | (x-12)^2=27 | | 10^4=(x^2+1) | | 2^-x-2=2^6 | | X+(0.06xX)=5 | | 5^-2m=5^3m | | 3(v+7)÷-3=7(v-1)÷-9 | | x^2+13x-7=15 | | x/4=6/10 | | 6y=3×,y=1/2× | | 3^-3n=9 | | t^2-t-3/2=0 | | 6x-52=4x+46 | | 23+4m=÷2 | | 2.7(n+7.8)+6.5=9n-4 | | p2-33p+16=0 | | n+(n+40)+(n-30)=150 | | 2m/5+7/10=9/2 | | 6(y+7.7)-8y=-9 | | x*x*x+2x=26 | | 2x+1=7,x= | | -2x+7x=x | | 9(c+9.6)+6=5.2c+1.5 | | 9x-5(2x-9)=2(x-1)+9 |